<) The MathWorks MATLAB& SIMULINK®

MATLAB for signal processing

Houman Zarrinkoub, PhD.

Product Manager
Signal Processing Toolboxes

houmanz@mathworks.com

© 2005 The MathWorks, Inc.

<} The MathWorks MATLAB‘& SIMULINK®

Outline

= Introduction

= Filter Design, simulation and implementation

= Adaptive and Multirate filters

= Spectral analysis of signals

= Fixed-point representation of signals and filters
« Path to C and HDL implementation

= Algorithm verification & validation

= Summary

- Q&A

<) The MathWorks MATLAB&SIMULINK®

Ubiquitous signal processing across industries

= Aerospace and Defense
= Automotive
« Communications

= Electronics and
Semiconductor

= Computers and Office
Equipment

= Education

<) The MathWorks MATLAB'&SIMULINK®

MATLAB as the platform for Signal

Processing & Technical Computing

Analysis and Modeling
Visualization

Algorithm Development
Prototyping & Simulation

Data Application Deployment Reporting and
E Verification & Validation Documentation

Software x‘
]H‘L | h Application

Deployment

Hardware

mRE .
[
="'
e— (T The
=':|—‘. S _'

<) The MathWorks MATLAB'& SIMULINK®

MATLAB for algorithm development
Simulink for System & Product development

Research System Design

Data NN, wr——"
Data Acq M A\nalysis & Rapid Vel_rlll:‘_lcTa;;cin,

& Import isualization Prototyping i

Algorithm
Design & Ger?gr%?ion
Analysis
Requirements : System 1
Specifications Modeling,

Modeling Simulation & Embedded Embedded
Partitioning Software Hardware

SP, Commes, T
Video & Image
Blocksets

Signal
Processing,

MATLAB

Fixed Point,
Filter Design
Toolboxes

<} The MathWorks MATLAB‘& SIMULINK®

MATLAB Tools for Signal Processing

Analysis of signals and design of filters
« Signal Processing toolbox
 Filter Design toolbox

» Fixed-Point representation of signals

» Fixed-Point toolbox

Related products

= Wavelet, Statistics, Image Processing toolboxes

= System-level design

= Simulink and Signal Processing Blockset

Path to HDL implementation
Filter Design HDL Coder

Hardware and software verification

= Link products (CCS and ModelSim)

<} The MathWorks MATLAB‘& SIMULINK®

Filter design, simulation &
iImplementation

= Signal Processing & Filter Design toolboxes

= Single-rate filters
= Lowpass, highpass, bandpass, etc.
= Designed based on spectral specifications
= Employed across many applications (i.e., modeling linear time-
invariant systems)
= Adaptive filters
= Modeling linear time-varying systems
= Learn and adapt to changes of the desired signal
= Important applications in noise and echo cancellation

= Multirate filters
= Different sampling frequency for input and output
= Used extensively in wireless receivers & digital audio systems

<} The MathWorks MATLAB‘& SIMULINK®

Example workflow: lowpass filter design

= Classical function-based approach
= Command-line or GUI-based (fdatool)
= New object-based approach
« Design: advantages of fdesign objects

= Implementation: advantages of filter objects
= Dfilt (single-rate digital filter)
= Mfilt (multirate filter)
= Adaptfilt (adaptive filter)

<) The MathWorks MATLAB'&SIMULINK®

Typical Lowpass Design Specifications

4 Mag. (dB)
L T Apass T
Astop
| l |
i : >
0 Fs/2 f(Hz)

F
pass stop

) The MathWorks MATLAB*& SIMULINK®

Classical function-based filter design

Example: FIR filter design by windowing AT x
Impulse response of ideal lowpass filter p=sms :jaans (08O

.} Filter Design & Analysis Tool - [untitled.fda * ;lﬂlﬁl

File Edit Analysis Targets Yiew Window Help

DEHER| 2P X (TR ENEA <0 BLOKE W

— Current Fitter Infartmation.

— Magnitude Responze (dE)

Magnitude (dB)

__ 01 nz 03 04 s 06 07 os 08 1
Structure: Direct-Form FIR Marmalized Frequency (xm rad/sample)

Qrder: e = A S PR o AR S AP S

Stahle: Yes

Source: Designed

<} MATLAB

File Edit Debug De

N0 | & B R

Magnitude (dB)

T A O T H
Store Fiter ... I o o1 0z 03 04 0s 0E . 08
. Mormalized Fraquency (7 racisample) Shortouts (2] How to &
Fitter Manager ... I e
3|
— Responze Type _ Fitter Order — Frequency Specifications — Magnitude Speci f1 =
& [Lowpass - «~ Ep |7— Units: INormaI\zed(Utmj -] 0.1 0.2 0.3 0.4 0.a 0bB 07 0.8 09 1
 Highy - .
ighpass P N The stenuation a Coluwns 1 thi Mormalized Frequency («<n rad/sample)
{~ Bandpass
" Bandstop —Options WY l 25 frequencies is fix
C Brooras — || ¥ scae Passband —— 0.0036 0.0381 0.1610 0.2973 0.2973 0.1610 0.0361

| DesignMethod || Viincow: IHammlng -l
(o} IBut‘Ierwnrth - Functon fiane: | Column &

Faratneter; I
* FIR Iv\nndnw - " |
Wiewy

0.0036

Design Fiter
|Designing Filter ... Done »» fregz(£1)

»» fZ=firl(le0,0.25):
>x fregz(£2)
»» fregz(£f1)
»» fregz(£2)
g |

@gm| ’WA

<) The MathWorks MATLAB’&SIMULINK®

An alternative to function-based design

Process of function-based design is sub-optimal

1. Choose a design method first

2. Guess its parameters and then design

3. Look at filter response to see if meets requirements
4. lterate by trial-and-error until requirements satisfied

Not efficient for assessing design trade-offs

Fdesign: A more optimal design methodology

1. First, set the design requirement
2. Find out what design methods can meet them

3. Then iterate through design methods and find the best

<) The MathWorks

MATLAB’&SIMULINK®

Filter design based on fdesign object

<) MATLAB

File Edit Debug Desktop wWindow Help

DE|-¥:.E“mlﬁﬁ@|@|lDﬁAppllcsﬂmnsm_lJIi

Shortcuts [Pl Howe to &dd [F] Wihat's Mew: [P Clear all [2] traffic [2] stakilize

_iof x|

[

== fd=fdesign.lowpass;

= fd.Fpass=0.Z4; fd.Fstop=0.Z%&
fd =
Pesponse: 'Lowpass'
Specification: 'Fp, F=st Ap, A=t
Description: {4xl c=11l}
NormalizedFreguency: truae

Fpas=s: 0.Z4
F=stop: 0O.Z6
Apass: 1
Astop: &0

=+ desigppmethods i £d4)

Design Methods for class fdesicgn. lowpass (Fp,Fst Ap A=st):

butter
chebvl
chehyz
ellip
equiripple
ifir
kaiserwin
maltistage

= dfZ=designifd, ' 'sguiripple"')

Rl |
dhatart|

A

Tradeoff analysis between
Stopband attenuation and
Filter order

Filter order relates to
algorithmic delay and

fcomputational complexity of
ilter

A Mag. (dB)
T]
Asmp
\ l |
f : -
0 E E Fs/2 f(Hz)
p stop

<} The MathWorks MATLAB‘& SIMULINK®

Capturing design as a filter object

=10].>]

Fil= Edit Debug Deskiop ‘Window Help

= Designed filter represented as o= |« v e - (8= 8 2 |owmmoe =] _
Shortcuts [#] Howe to &dd [P What's Mesw [#] Clear all [P] traffic [#] stakiize >

= Coefficients as MATLAB vectors [, =
. Captured aS dfllt ObJeCt Response: 'Lowpass!'

Specificaction: 'Fp,F=st,Ap, Ast!

- Filter objects facilitate task of |zzoss: oo =

Fpass: 0.24

analyzing the design

Apas=s: 1
hA=stop: &0

-} Figure 2: Filter Visualization Tool - Magnitude Response (dB) o [4]
i

Eile Edit Analysis Insert Wiew Window Help

DaSR|KOTNNNR 220X Bl afs =

BIEI R # & [0 — 8 k] @ RIEA

Fitter designed using fdesign- Magnitude Response (dB) et d s e SR BE LS S elE RS E ek S 1 anist
| - T T T T m T T n Arithmetic: 'double!
0 - ' """" ”‘ """" ” """ """] MNumerator: [1x202 doukle]
. : PersistentMemory: false
- | U S Y SO U VU | >> info (df3)
. Discrete—-Time FIE Filter (real)
%)t LT R R . e R ERE TR R EEE - 4---------""""""""""¥"¥"¥"¥/"/"V/"-""""""7""”"”"”""=
= n Filter 3Itructure : Direct—-Form FIR
E’n--’lﬂ Filcer Length : 202
= Stable : Yes
U Linear Phase : ¥Yes (Type 2)

l | n

4\ Start R |

o
(=]

i

a 0.1 0z 0.3 4 05 L] T
Mormalized Frequency (=mn radisample)

-y
o
T
'
"
'
'
'
'
'
—
=

& 04

<} The MathWorks MATLAB‘& SIMULINK®

Advantages of using filter objects

= Consolidated visualization and analysis (fvtool)
= Trade-off analysis for filtering via various structures
= Overloaded filter function
= List of supported filter structures
= Path to simulation and automatic code generation
= Simulink model
= Generate HDL code
= Automatic estimation of computational complexity
= Examining the Simulink model
= Use of cost function

<) The MathWorks MATLAB'& SIMULINK®

Simulation and implementation in
MATLAB

= Advantage of using dfilt objects
<} MATLAB =1ol =l

Fie Edt Debug Desktop Window Help . Fllterlng with overloaded
D@ |t @S - |8ef B @ |[owmicinse 5] o] & filter function

Shortcuts [Z] Howe to 2dd [#] What's Mews [#] Clear all [#] traffic [#] stakilize =
. - :;n e one o = a otwrin = = i -:J 1 H
EZI;Z;SEZTETEEEEL spe}Zific st.:uE:ur: ile_g_gh;:zpdlei?dif)i—t L Choose among Varlous fllter
—— structures

e Direct control over states of

dfsvmfir — Direct—-form symmetric FIR. .
dfasymfir — Direct—-form antisymmetric FIR. I Ear

Direct—-form FIPL.

Overlap-add FIER.

latticemamax Lattice moving-average (MA) for maximam pl

latticemamin Lattice moving-awverage (MA) for minimam pl
ITR

dfl — Direct—form TI.

dflsos — Direct—form I, second-order sections._

dfle — Directc—-form I tcransposed.

dflt=sos — Direct—-form I transposed, second-order =sec

dfz — Direct—-form ITI.

dfZsos — Direct—form II, second-order sections.

dfZe — Direct—form IT transposed.

dfft=os — Direct—-form ITI transposed, =second-order =se

latticeallpass — Lattice allpas=s.

latticear — Lattice autoregressiwve (AR .

lacticearma — Lattice autoregressiwve moving—average tARI-J

S‘;E.t—ESEE.CE St.at.e—space.

<) The MathWorks MATLAB'& SIMULINK®

Path to system-level simulation with
Simulink & Signal Processing Blockset

= sLrilter o] x|

File Edit Wiew Simulation Faormak Tools Help L Reallzemdl methOd Of fllter
NDEEHES | 4BRR|(E&E= 49z nfr rome =) B @& ObjeCtS

= Generates a Simulink
model representing the

I designed filter
Lttt J‘J.ll.l .
Jﬂ SIS 42 = Implemented with
Random | s delay, sum and gain
Number “ blocks
7 - Reflects the structure of
the filter
_%—‘- . "
< = Helps visualize the
L e 2 computational
.. | complexity
[

<} The MathWorks MATLAB‘& SIMULINK®

Automatic HDL code generation from
filter objects

i1
—_ HODL fitter
. . . Filter taraet langusce: IVHDL d
= Functionality of Filter =

Des i g n H D L COd e r Target directory: hdlsrc Brnwae...l

n S u p po rtS both VH D L Reset t'ﬁJE—Z N IAsy.ncl:hrnnnua
a n d Ve ri Iog COd e ot IMumpher [2dd pipeline registers

| Command_line With HDL Options .. | ok nputs: ISingIe d
generatehdl methOd __ Test hench types

Marne: Ifilter_th

- GUI-based as a target @ Stpresponse
I ¥ %HOL file ¥ Ramp response
in fdatool

Reset azserted level: IActive-high

[[|
j FIR adder style: ILinear j
[~ Optimize for HOL

v Impulse response

I verlog 1l [Chirp response

[‘White noize response

[™" ModelZim do fil [~ User defined response

Test Bench Cptions ... |

Generate Cloze Helgp

<} The MathWorks MATLAB‘& SIMULINK®

Estimation of filter computational

complexity
Examine realized Simulink Direct-Form FIR filter
model to estimate number
Of ac_ldl_tlon_s & Sampling Frequency (MHz) 100
multiplications per sample
Together with sampling Filter order 202
frequency estimate
second
Number of Adders 641
Use the Cost method of
filter objects Number of States 630
Important tool in studying
design tradeoffs in terms Of Multiplications per input sample 42.8
qua“ty and CompleXIty Additions per input sample 42.7
Operations per second (MOPS) 8550

<} The MathWorks MATLAB‘& SIMULINK®

Multirate filters

An important class of filters
Widespread use in high data-rate signal processing
Major applications:

= Wireless receivers

= Digital audio systems

Design challenge

= Meet spectral specification
- Minimize aliasing effect
= Minimize the computational cost

= Use efficient filter structures to avoid wasting processing
power

<) The MathWorks MATLAB*& SIMULINK®

Example: decimator of a receiver
Lowpass filter + downsampler

Filter to avoid Inefficient: Many computed

aliasing samples are thrown away by
downsampling
IF i
signal
— ADC - T > —
~ Fs Fs i M ' Fs’ = Fs/M
Lowpass filter Downsampler

Digital down-converter

< _J The MathWorks

Reestablish efficiency:

MATLAB’&SIMULINK®

Polyphase filter structure

Any lowpass
filter

—1 H(z) —{ vM

Can be represented in polyphase format
H(z) =

bg+bz'+by,z2+ ... +byzN =

Ho(zV) + z"H,(zM) + ... + zM*T H,, ,(zM) |—'

Ho(zM)

1

H,(zM)

Nan
NP

7~

Hp.1(zM)

S v M

<) The MathWorks MATLAB'& SIMULINK®

Efficient Polyphase Decimators

s 1 *M Fs' = FsiM. Hol2)
1 Lowpass Filters running
Z at lower sample-rates
M 1 Hi@) =D
1
|
I
L. M 1 Hua(2)

<) The MathWorks MATLAB*& SIMULINK®

Efficient Multirate Filters

= Interpolators = Sample-rate converters
= Polyphase FIR interpolator = Polyphase FIR SRC
= Hold interpolator = Polyphase fractional
- Linear interpolator decimator
: Frequency Domain = Polyphase fractional
interpolator interpolator

= Cascaded Integrator-Comb
(CIC) interpolator

= Decimators
= Polyphase FIR decimator

= Transposed polyphase FIR
decimator

= CIC decimator

<} The MathWorks MATLAB‘& SIMULINK®

Featuring multistage CIC Filters

* Very computationally efficient: No multipliers

D=E 2 ¥ b«
Input

» Drawback: poor lowpass response

* Need cascading with a compensation filter

» Multistage cascades reduce computational cost

M = M *M,*...*M,

—>jL—>¢|\/|1—>jL—>¢|\/|2———+jL—>¢|\/|k—>

Fs ks’

s) The MathWorks MATLAB'&SIMULINK®

Design of cascaded multistage
Houman',Gspx', Gspx2005' cicdesign.m™* I] B4

d eCI I I lato rS Edit Text el Tools Debug Desktop ‘Window Help | | A M

|*BoB B | = fro |+ | [| x [o

(e

. 1- ML = 4; a
- DeS|gn 2 : Edl : Jf--ileZiE:::l:Zizzti:ii;if?zic',D,Fp,Ast,Fs:I;
. fdeS|gn ObJeCtS : - Heic = designiHdl, 'multisection');
= Implementation |
. mfilt objects B S TR S
10 - Heowp = design(HdZ, 'equiripple'’;

Ik (Heie, Hooup)
File Edit Debug Desktop ‘Window Help =
(] ﬁ.”‘| & B v o ‘ ﬁ ﬁ & | @ ‘Currem Directory;:ID:U—Iouman\GsplespxzDDs ﬂJ I ’I

Shortcuts (2] Howto Add [2] \What's Mewe (2] Clear all (2] traffic [2] stakilze (2] lane detection

MFILT.STRUCTURE can be one of the following {type help mfilt/<STRUCTURE> -] |SCFII01 Ln 1 Col 1 |C"‘\|"'R ‘é
to get help on a specific structure - e.g. help mfilt/cicdecim):

Decimators

firdecim - Direct-form FIR polyphase decimator

firtdecim - Direct-form transposed FIR polyphase decimator

cicdecim - Cascaded integrator-cowb (CIC) decimator (Fixed-Point Toolbox Recuired)
Interpolators

firinterp - Direct-form FIPR polyphase interpolator

cicinterp - Cascaded integrator-comb (CIC) interpolator (Fixed-Point Toolbox Required)

linearinterp - FIR linear interpolator

holdinterp - FIR hold interpolator

fitfirinterp - Owerlap-add FIPR polyphase interpolator

Rational Sauple-Rate Converters

firsrc - Direct-form FIR polyphase sample-rate converter
firfracdecin = Direct-form FIR polyphase fractional decimator
firfracinterp - Direct-form FID polyphase fractional interpolator

L

See also mfilt

4 start ovR |

< J The MathWorks

MATLAB’&SIMULINK®

CIC + multi-stage polyphase and half-band
compensators: Filter response

) Filter ¥isualization - Figure 1: Filter ¥isualization Tool - Magnitude Response (dB) =] |

File Edit Analysis Insert Wiew Debug Deskbop ‘Window Help L] | A X
HOHAO
Response of CIC decimator (M=4) Compensator (M=2) and Halfband (M=2)
T T T T T T T
20 |-
— + — Second stage: Compensator
40 - o o - Third stage: Haltband
: : : 5 : : : o : .
: : : :

g 5 g
B SRS S R RRERT] 'SETRTRRRPRRRE. FERERR. TRR SR HbooontesonAaooo0e" HERBI0NEEEL. ty JEDA0RER0Gt 0000
= B
E :
o N
[N
= :

C ST T SR e focedog” - Ygooocoaggegef T peoes

00 - 0o
] R & o)
I i I i
o 5 10 15 20 25 30 =5 40 45
Freguency (Hz)
4

CIC with 2-stage Compensator

Sampling Frequency (MHz) 100
Decimation Factor 4x2X2
Number of Multipliers 86
Number of Adders 94
Number of States 166
Multiplications per input sample 6.0625
Additions per input sample 12.125
Operations per second (MOPS) 1818

<} The MathWorks MATLAB‘& SIMULINK®

Adaptive filters

= Tracking a desired signal by adapting a filter based on

error belween desire
= Applications include:
= Acoustic echo cancellation
= Adaptive Noise Canceling (ANC)
= Equalization in Digital Communications
= Active Noise Control
= Design challenges
= Maximize speed of convergence
= Minimize steady-state error

?

signal and filter output

input output
x(n) 7%2) y()

/

d(n)
desired signal

e(n)

error

<) The MathWorks MATLAB*& SIMULINK®

Adaptive Filtering Algorithms
In Filter Design Toolbox

= Gradient-based = Active noise control
= LMS = Filtered X LMS
- Normalized LMS « Recursive least-squares
= Block LMS = RLS, RW-Kalman
- Delayed LMS = Sliding-window RLS
= Adjoint LMS = Householder
= Sign Algorithms = Householder sliding-window
= Signed-error = QR decomposition
- Signed-data - Frequency-domain
= Signed-sign - FDAF
= Affine projection = Unconstrained FDAF
= Direct matrix inversion = Partitioned-block FDAF
= Recursive updates = Unconstrained PBFDAF
- Block AP = Fast algorithms
- FTF, SWFTF

- GAL, Least-squares lattice

<) The MathWorks MATLAB'& SIMULINK®

Using Adaptfilt filter object

= Construction

hims = adapffilt.Ims(7); T '—h&ﬂs arming curve
Filtering with
overloaded filter
function

- Compute mean)
squared error :

mselms = msesim(hims,v2,x,M);
msenlms = msesim(hnims,v2,x,M); 06

= Trade-off between
convergence &
steady state MSE

<} The MathWorks MATLAB‘& SIMULINK®

Spectral analysis

Time-frequency duality
Gain insight from analyzing spectral content

Power spectral density as Fourier transform of
signal auto-correlation

Spectrum objects to study power spectrum

h= spectrum.periodogram;
h =
EstimationMethod: 'Periodogram’
FFTLength: 'NextPow2'
WindowName: 'Rectangular’

<) The MathWorks MATLAB'& SIMULINK®

Signal Processing Toolbox spectral
analysis techniques

Periodogram

Welch

MTM (Thomson multitaper method)
Burg

Covariance

Modified Covariance

Yule-Walker

MUSIC (Multiple Signal Classification)
Eigenvector

<} The MathWorks MATLAB‘& SIMULINK®

Benefits of spectral objects

= Estimating the spectral characteristics of
systems operating on received signals

- Effect of windowing and overlaps on power
spectral estimate __.
= Wintool I8 0l A

<} The MathWorks MATLAB‘& SIMULINK®

Fixed-Point Sighal Processing

= Link between algorithm development and
nardware implementation

= Lower cost: driver for using fixed-point
processors

= Design challenges:
= Conversion of design to fixed-point
= Model the effect of finite word lengths

= Ensure adherence to specifications before
hardware prototyping

<) The MathWorks MATLAB*& SIMULINK®

What is Fixed-Point?

= Finite word length arithmetic with a fixed number of
fractional digits

>> a=Fi(pi, true, 8, 5);

>> bin(a)

o 1 1. 0 O 1 O 1

s 2 1.1/2 1/4 1/8 1/16 1/32
>> double(a)

3.15625

<) The MathWorks MATLAB*& SIMULINK®

Fixed-Point in MATLAB®

= Fixed-point numeric object Ti
= Bit-faithful fixed-point math in MATLAB
= Fixed-point algorithm development in M
= Natural MATLAB syntax
>> a=f1(0.1);
>> bin(a)
ans =

0110011001100110

<) The MathWorks MATLAB'&SIMULINK®

Benefits of fi1?

= Quick fixed-point algorithm design and
prototyping

= Test vectors for verification and validation

= Arbitrary word lengths (up to 65535 bits)

= Easier algorithm debug and visualization

« Enables fixed-point in Filter Design Toolbox

= Supports Simulink To/From Workspace

= Supported in Embedded MATLAB Function block

<} The MathWorks MATLAB‘& SIMULINK®

Workflow of embedded fixed-point algorithm
designer

1. Set-up simulation flow (initialization, loop, termination)
2. Express your floating-point M-code algorithm
Focus on algorithmic integrity, proof of concept
3. Simulate
iterate on algorithm trade-offs, validate against requi
4. Convert design to fixed-point
Focus of design viability based on implementation constraints
5. Simulate

iterate on implementation trade-offs, validate again{ prigi
requirements

6. (Generate code for hardware implementation
7. Validate and verify design after hardware deployment

ent

<} The MathWorks MATLAB‘& SIMULINK®

Conversion of design from floating to
fixed-point
Steps involved with translating dynamic range of floating-
point signal to convert design into fixed-point

1. Compute the range of the min/max logs

2. Compute the integer part such that the range will not
overflow

3. Compute the fraction length
4. Construct the fixed-point numeric type object

1. A = max(abs(double(minlog(x))),abs(double(maxlog(x))));

2. integer_part = ceil(log2(A));

3. fraction_length = word_length - integer_part - double(logical(is_signed));
4. T = numerictype(is_signed, word_length, fraction_length);

MATLAB’&SIMULINK®

«) The MathWorks

Conversion of filter to fixed-point

Set the fixed-point property of the dfilt object
At command-line or in fdatool GUI

<) MATLAB

File Edit Debug Desktop Window Help

=10l x|

) Filter Design & Analysis Tool - [untitled.fda *]
— : Wiews Window Help

_|o x|

b 25X |0 | Rd # 2 [0 — BB b © B (1| W2

[EF:'| & BB R n‘|ﬁﬁ? @|?|ID:1&pplicaﬁDnsﬁr

Shortcuts [Pl Howeto Add [#] what's Mewe [#] Clear all

[7] tratfic »

dfi =

Filter3tructure:
Arithmetic:
Nutrerator:
FPersistentMemory:

CoeffWordLength:
Coeffiutolcale:

Signed:

InputWordLength:
InputFracLength:

FilterInternals:

Fx dfd.Arithmetic='fixed!’

'Direct-Form FIR'
'Lixed!’

[1x174 doukble]
fal=se

16
true

trues

la
15

'"FullPreci=sion'

T

— Magnitude Response (dB)

D T T o L LI T r 1 1 1 1 |
! ! ! Direct-Form FIR: Quartized
R — : : : — --— - Direct-Form FIR: Reference
e o T SRS Eoren Sxre STRRH SEr SR
o
=
= H H H H H
rtized) E i i i i i
=TTy S O e el S [N [[I
= i i i i i i
i1 b I a 1 K nll!
i VI TR
ol A
|] 0 02 0.3 0.4 0.5 06 oF nas 04
I Mormalized Freguency (=a radfzample)
oirt = | Fitter precision: |specify | | coefticierts || nputioutput || Fiter Internals
ﬁ? [¥ Best-precision fraction lengths] s e e
otk ﬁ3 [~ Scale the numerator coefficients to fully
Ltilize the ertire dynamic range
i T

Lpply |

[ovR v

<) The MathWorks MATLAB’&SIMULINK®

Path to C and HDL Implementation

= System-level simulation and integration
= Simulink, Signal Processing Blockset
= Support for single-rate, multirate adaptive filters
= Realizemdl| and block methods
= Automatic C code generation from Simulink

= Real-Time Workshop
« Real-Time Workshop Embedded Coder

= Automatic HDL code generation for filters
= Filter Design HDL Coder
= Support for single-rate, multirate adaptive filters

<) The MathWorks MATLAB’& SIMULINK®

Hardware Verification & Validation

= Link for Code Composer Studio
= Tl hardware

= Link for ModelSim
= Simulate HDL generated using ModelSim

System-Level Design | Cosimulation and

and Simulation and Verification HDL Simulation

Link for ModelSim®

<) The MathWorks MATLAB'&SIMULINK®

Summary

- MATLAB Signal Processing capabilities are
productivity tools designed to respond to everyday
challenges of researchers, scientists and
engineers in all stages of development process

= These include filter design, implementation, for
single-rate, multirate and adaptive filters, spectral
analysis, conversion of algorithms and filters to
fixed-point and path to automatic hardware code
generation and verification

<) The MathWorks MATLAB'&SIMULINK®

For more information

= About MATLAB and Simulink signal processing
products

= http://www.mathworks.com/products/product listing/index.html

= About relevant product demos
= http://www.mathworks.com/products/demos/index.html

= User-contributed examples in MATLAB Central

= http://www.mathworks.com/matlabcentral

http://www.mathworks.com/products/product_listing/index.html
http://www.mathworks.com/products/demos/index.html
http://www.mathworks.com/matlabcentral

	MATLAB for signal processing
	Outline
	Ubiquitous signal processing across industries
	MATLAB as the platform for Signal Processing & Technical Computing
	MATLAB for algorithm development�Simulink for System & Product development
	MATLAB Tools for Signal Processing
	Filter design, simulation & implementation
	Example workflow: lowpass filter design
	Typical Lowpass Design Specifications
	Classical function-based filter design
	An alternative to function-based design
	Filter design based on fdesign object
	Capturing design as a filter object
	Advantages of using filter objects �
	Simulation and implementation in MATLAB
	Path to system-level simulation with Simulink & Signal Processing Blockset
	Automatic HDL code generation from filter objects�
	Estimation of filter computational complexity�
	Multirate filters
	Example: decimator of a receiver�Lowpass filter + downsampler
	Reestablish efficiency:�Polyphase filter structure
	Efficient Polyphase Decimators
	Efficient Multirate Filters
	Featuring multistage CIC Filters
	Design of cascaded multistage decimators
	CIC + multi-stage polyphase and half-band compensators: Filter response�
	Adaptive filters
	Adaptive Filtering Algorithms�in Filter Design Toolbox
	Using Adaptfilt filter object
	Spectral analysis
	Signal Processing Toolbox spectral analysis techniques
	Benefits of spectral objects
	Fixed-Point Signal Processing
	What is Fixed-Point?
	Fixed-Point in MATLAB®
	Benefits of fi?
	Workflow of embedded fixed-point algorithm designer
	Conversion of design from floating to fixed-point
	Conversion of filter to fixed-point
	Path to C and HDL Implementation
	Hardware Verification & Validation�
	Summary
	For more information

