
©
20

05
 T

he
 M

at
hW

or
ks

, I
nc

.

MATLAB for signal processing

Houman Zarrinkoub, PhD.
Product Manager
Signal Processing Toolboxes

houmanz@mathworks.com

2

Outline

Introduction
Filter Design, simulation and implementation
Adaptive and Multirate filters
Spectral analysis of signals
Fixed-point representation of signals and filters
Path to C and HDL implementation
Algorithm verification & validation
Summary
Q & A

3

Ubiquitous signal processing across industries

Aerospace and Defense
Automotive
Communications
Electronics and
Semiconductor
Computers and Office
Equipment
Education

4

MATLAB as the platform for Signal
Processing & Technical Computing

Data

Software

Hardware

Analysis and Modeling
Visualization
Algorithm Development
Prototyping & Simulation
Application Deployment
Verification & Validation

Reporting and
Documentation

Application
Deployment

5

MATLAB for algorithm development
Simulink for System & Product development

RTW

Embedded Targets

Link products

Verification,
HIL Test

Code
Generation

System
Modeling,

Simulation &
Partitioning

System
Components

Environment
Effects

Embedded
AlgorithmsAlgorithm

Design &
Analysis

Embedded
Software

Embedded
Hardware

System Design TestResearch

Data
Analysis &

Visualization
Data Acq
& Import

Mathematical
Modeling

SP, Comms,
Video & Image

Blocksets

Simulink
MATLAB

Signal
Processing,

Fixed Point,
Filter Design

Toolboxes

Rapid
Prototyping Im

plem
entRequirements

Specifications

6

MATLAB Tools for Signal Processing
• Analysis of signals and design of filters

• Signal Processing toolbox
• Filter Design toolbox

• Fixed-Point representation of signals
• Fixed-Point toolbox

Related products
Wavelet, Statistics, Image Processing toolboxes

System-level design
Simulink and Signal Processing Blockset

Path to HDL implementation
Filter Design HDL Coder

Hardware and software verification
Link products (CCS and ModelSim)

7

Filter design, simulation &
implementation

Signal Processing & Filter Design toolboxes
Single-rate filters

Lowpass, highpass, bandpass, etc.
Designed based on spectral specifications
Employed across many applications (i.e., modeling linear time-
invariant systems)

Adaptive filters
Modeling linear time-varying systems
Learn and adapt to changes of the desired signal
Important applications in noise and echo cancellation

Multirate filters
Different sampling frequency for input and output
Used extensively in wireless receivers & digital audio systems

8

Example workflow: lowpass filter design

Classical function-based approach
Command-line or GUI-based (fdatool)

New object-based approach
Design: advantages of fdesign objects
Implementation: advantages of filter objects

Dfilt (single-rate digital filter)
Mfilt (multirate filter)
Adaptfilt (adaptive filter)

9

Typical Lowpass Design Specifications

0 f (Hz)

Mag. (dB)

Apass

Astop

|
Fpass

|
Fstop

Fs/2

0

10

Classical function-based filter design
Example: FIR filter design by windowing

Impulse response of ideal lowpass filter

11

An alternative to function-based design
Process of function-based design is sub-optimal

1. Choose a design method first
2. Guess its parameters and then design
3. Look at filter response to see if meets requirements
4. Iterate by trial-and-error until requirements satisfied

Not efficient for assessing design trade-offs

Fdesign: A more optimal design methodology
1. First, set the design requirement
2. Find out what design methods can meet them
3. Then iterate through design methods and find the best

12

Filter design based on fdesign object

Tradeoff analysis between
Stopband attenuation and
Filter order
Filter order relates to
algorithmic delay and
computational complexity of
filter

0 f (Hz)

M ag. (dB)

A pas s

A s top

|
Fpas s

|
Fs top

Fs /2

0

13

Capturing design as a filter object
Designed filter represented as

Coefficients as MATLAB vectors
Captured as dfilt object

Filter objects facilitate task of
analyzing the design

14

Advantages of using filter objects

Consolidated visualization and analysis (fvtool)
Trade-off analysis for filtering via various structures

Overloaded filter function
List of supported filter structures

Path to simulation and automatic code generation
Simulink model
Generate HDL code

Automatic estimation of computational complexity
Examining the Simulink model
Use of cost function

15

Simulation and implementation in
MATLAB

Advantage of using dfilt objects
Filtering with overloaded
filter function
Choose among various filter
structures
Direct control over states of
filter

16

Path to system-level simulation with
Simulink & Signal Processing Blockset

Realizemdl method of filter
objects

Generates a Simulink
model representing the
designed filter
Implemented with
delay, sum and gain
blocks
Reflects the structure of
the filter
Helps visualize the
computational
complexity

17

Automatic HDL code generation from
filter objects

Functionality of Filter
Design HDL Coder
Supports both VHDL
and Verilog code
Command-line with
generatehdl method
GUI-based as a target
in fdatool

18

Estimation of filter computational
complexity

Examine realized Simulink
model to estimate number
of additions &
multiplications per sample
Together with sampling
frequency estimate
Number of Operations per
second
Use the Cost method of
filter objects
Important tool in studying
design tradeoffs in terms of
quality and complexity

Direct-Form FIR filter

Sampling Frequency (MHz) 100

Filter order 202

Number of Multipliers 642

Number of Adders 641

Number of States 630

Multiplications per input sample 42.8

Additions per input sample 42.7

Operations per second (MOPS) 8550

19

Multirate filters

An important class of filters
Widespread use in high data-rate signal processing
Major applications:

Wireless receivers
Digital audio systems

Design challenge
Meet spectral specification

Minimize aliasing effect
Minimize the computational cost

Use efficient filter structures to avoid wasting processing
power

20

Example: decimator of a receiver
Lowpass filter + downsampler

Digital down-converter

ADC

Lowpass filter

IF
signal

M

Downsampler

Fs’ = Fs/MFsFs

Inefficient: Many computed
samples are thrown away by
downsampling

Filter to avoid
aliasing

21

Reestablish efficiency:
Polyphase filter structure

H(z)
≡

H0(zM)

z-1

H1(zM)

z-1

HM-1(zM)

Any lowpass
filter

Can be represented in polyphase format
H(z) =
b0 + b1z-1 + b2z-2 + … + bNz-N =

H0(zM) + z-1 H1(zM) + … + z-M+1 HM-1(zM)

M M

22

Efficient Polyphase Decimators

z-1

z-1

H0(z)M

H1(z)M

HM-1(z)M

Lowpass Filters running
at lower sample-rates

Fs’ = Fs/MFs

23

Efficient Multirate Filters
Interpolators

Polyphase FIR interpolator
Hold interpolator
Linear interpolator
Frequency Domain
interpolator
Cascaded Integrator-Comb
(CIC) interpolator

Decimators
Polyphase FIR decimator
Transposed polyphase FIR
decimator
CIC decimator

Sample-rate converters
Polyphase FIR SRC
Polyphase fractional
decimator
Polyphase fractional
interpolator

24

Featuring multistage CIC Filters

• Drawback: poor lowpass response

• Need cascading with a compensation filter

• Multistage cascades reduce computational cost

M1 M2
Fs

M = M1*M2*…*Mk

Mk
Fs’

• Very computationally efficient: No multipliers

25

Design of cascaded multistage
decimators

Design
fdesign objects

Implementation
mfilt objects

26

CIC + multi-stage polyphase and half-band
compensators: Filter response

CIC with 2-stage Compensator

Sampling Frequency (MHz) 100

Decimation Factor 4 x 2 X 2

Number of Multipliers 86

Number of Adders 94

Number of States 166

Multiplications per input sample 6.0625

Additions per input sample 12.125

Operations per second (MOPS) 1818

27

Adaptive filters

Tracking a desired signal by adapting a filter based on
error between desired signal and filter output
Applications include:

Acoustic echo cancellation
Adaptive Noise Canceling (ANC)
Equalization in Digital Communications
Active Noise Control

Design challenges
Maximize speed of convergence
Minimize steady-state error

H(z)
input

x(n) e(n)
error

d(n)
desired signal

-
output

y(n)

28

Adaptive Filtering Algorithms
in Filter Design Toolbox

Gradient-based
LMS
Normalized LMS
Block LMS
Delayed LMS
Adjoint LMS

Sign Algorithms
Signed-error
Signed-data
Signed-sign

Affine projection
Direct matrix inversion
Recursive updates
Block AP

Active noise control
Filtered X LMS

Recursive least-squares
RLS, RW-Kalman
Sliding-window RLS
Householder
Householder sliding-window
QR decomposition

Frequency-domain
FDAF
Unconstrained FDAF
Partitioned-block FDAF
Unconstrained PBFDAF

Fast algorithms
FTF, SWFTF
GAL, Least-squares lattice

29

Using Adaptfilt filter object

Construction
hlms = adaptfilt.lms(7);

Filtering with
overloaded filter
function
Compute mean
squared error

mselms = msesim(hlms,v2,x,M);
msenlms = msesim(hnlms,v2,x,M);

Trade-off between
convergence &
steady state MSE

30

Spectral analysis

Time-frequency duality
Gain insight from analyzing spectral content
Power spectral density as Fourier transform of
signal auto-correlation
Spectrum objects to study power spectrum

h= spectrum.periodogram;
h =

EstimationMethod: 'Periodogram'
FFTLength: 'NextPow2'
WindowName: 'Rectangular'

31

Signal Processing Toolbox spectral
analysis techniques

Periodogram
Welch
MTM (Thomson multitaper method)
Burg
Covariance
Modified Covariance
Yule-Walker
MUSIC (Multiple Signal Classification)
Eigenvector

32

Benefits of spectral objects

Estimating the spectral characteristics of
systems operating on received signals
Effect of windowing and overlaps on power
spectral estimate
Wintool

33

Fixed-Point Signal Processing

Link between algorithm development and
hardware implementation
Lower cost: driver for using fixed-point
processors
Design challenges:

Conversion of design to fixed-point
Model the effect of finite word lengths
Ensure adherence to specifications before
hardware prototyping

34

What is Fixed-Point?

Finite word length arithmetic with a fixed number of
fractional digits
>> a=fi(pi, true, 8, 5);

>> bin(a)

0 1 1 . 0 0 1 0 1

s 2 1 . 1/2 1/4 1/8 1/16 1/32

>> double(a)

3.15625

35

Fixed-Point in MATLAB®

Fixed-point numeric object fi
Bit-faithful fixed-point math in MATLAB
Fixed-point algorithm development in M
Natural MATLAB syntax

>> a=fi(0.1);
>> bin(a)
ans =

0110011001100110

36

Benefits of fi?

Quick fixed-point algorithm design and
prototyping
Test vectors for verification and validation
Arbitrary word lengths (up to 65535 bits)
Easier algorithm debug and visualization
Enables fixed-point in Filter Design Toolbox
Supports Simulink To/From Workspace
Supported in Embedded MATLAB Function block

37

Workflow of embedded fixed-point algorithm
designer

1. Set-up simulation flow (initialization, loop, termination)
2. Express your floating-point M-code algorithm

Focus on algorithmic integrity, proof of concept
3. Simulate

iterate on algorithm trade-offs, validate against requirements
4. Convert design to fixed-point

Focus of design viability based on implementation constraints
5. Simulate

iterate on implementation trade-offs, validate against original
requirements

6. Generate code for hardware implementation
7. Validate and verify design after hardware deployment

38

Conversion of design from floating to
fixed-point

Steps involved with translating dynamic range of floating-
point signal to convert design into fixed-point

1. Compute the range of the min/max logs
2. Compute the integer part such that the range will not

overflow
3. Compute the fraction length
4. Construct the fixed-point numeric type object

1. A = max(abs(double(minlog(x))),abs(double(maxlog(x))));
2. integer_part = ceil(log2(A));
3. fraction_length = word_length - integer_part - double(logical(is_signed));
4. T = numerictype(is_signed, word_length, fraction_length);

39

Conversion of filter to fixed-point
Set the fixed-point property of the dfilt object
At command-line or in fdatool GUI

40

Path to C and HDL Implementation

System-level simulation and integration
Simulink, Signal Processing Blockset
Support for single-rate, multirate adaptive filters

Realizemdl and block methods
Automatic C code generation from Simulink

Real-Time Workshop
Real-Time Workshop Embedded Coder

Automatic HDL code generation for filters
Filter Design HDL Coder
Support for single-rate, multirate adaptive filters

41

Hardware Verification & Validation

Link for Code Composer Studio
TI hardware

Link for ModelSim
Simulate HDL generated using ModelSim

42

Summary

MATLAB Signal Processing capabilities are
productivity tools designed to respond to everyday
challenges of researchers, scientists and
engineers in all stages of development process

These include filter design, implementation, for
single-rate, multirate and adaptive filters, spectral
analysis, conversion of algorithms and filters to
fixed-point and path to automatic hardware code
generation and verification

43

For more information

About MATLAB and Simulink signal processing
products

http://www.mathworks.com/products/product_listing/index.html

About relevant product demos
http://www.mathworks.com/products/demos/index.html

User-contributed examples in MATLAB Central
http://www.mathworks.com/matlabcentral

http://www.mathworks.com/products/product_listing/index.html
http://www.mathworks.com/products/demos/index.html
http://www.mathworks.com/matlabcentral

	MATLAB for signal processing
	Outline
	Ubiquitous signal processing across industries
	MATLAB as the platform for Signal Processing & Technical Computing
	MATLAB for algorithm development�Simulink for System & Product development
	MATLAB Tools for Signal Processing
	Filter design, simulation & implementation
	Example workflow: lowpass filter design
	Typical Lowpass Design Specifications
	Classical function-based filter design
	An alternative to function-based design
	Filter design based on fdesign object
	Capturing design as a filter object
	Advantages of using filter objects �
	Simulation and implementation in MATLAB
	Path to system-level simulation with Simulink & Signal Processing Blockset
	Automatic HDL code generation from filter objects�
	Estimation of filter computational complexity�
	Multirate filters
	Example: decimator of a receiver�Lowpass filter + downsampler
	Reestablish efficiency:�Polyphase filter structure
	Efficient Polyphase Decimators
	Efficient Multirate Filters
	Featuring multistage CIC Filters
	Design of cascaded multistage decimators
	CIC + multi-stage polyphase and half-band compensators: Filter response�
	Adaptive filters
	Adaptive Filtering Algorithms�in Filter Design Toolbox
	Using Adaptfilt filter object
	Spectral analysis
	Signal Processing Toolbox spectral analysis techniques
	Benefits of spectral objects
	Fixed-Point Signal Processing
	What is Fixed-Point?
	Fixed-Point in MATLAB®
	Benefits of fi?
	Workflow of embedded fixed-point algorithm designer
	Conversion of design from floating to fixed-point
	Conversion of filter to fixed-point
	Path to C and HDL Implementation
	Hardware Verification & Validation�
	Summary
	For more information

