Chapter 5: DC Motors
Reversing the Rotation Direction

- The direction of rotation can be reversed by reversing the current flow in either
 - the armature connection
 - the shunt & series field windings

(base) (reversed) (reversed)
Motor Starting

- Full voltage applied to a starting motor can:
 - burn out the armature
 - damage the commutator and brushes due to heavy sparking
 - overload the supply feeder
 - snapping off the shaft due to mechanical shock
 - damage the mechanical load

- Means must be provided to limit the starting current to reasonable values (between 1.5 & 2 pu of full-load current)
 - connect a rheostat in series with the armature
 - as speed increases, the counter emf increases
 - the resistance can be reduced as the counter emf increases
 - use power electronics to drive the armature current
Motor Starting

• Manual face-plate starter for a shunt motor
 – contacts connect to current-limiting resistors
 • contact arm in off position (m)
 • manually move arm to position (n) to start
 • supply voltage causes full filed current flow
 • armature is limited by four resistors
 • as speed increases, E_0 builds
 • when acceleration ceases, arm is move to the next contact, where the motor begins to accelerate
 • at last contact, electromagnet holds arm in place
Stopping the Motor

- Stopping a dc motor is a nontrivial operation
 - large motors coupled to a heavy inertia load may take an hour or more to halt
 - braking action is often required: apply a braking torque to ensure rapid stop
 - mechanical friction
 - electrical braking - reverse power flow
 - dynamic braking: transfer the armature circuit to a load resistor
 - Plugging: reversing the flow of armature current
Dynamic Braking

- The armature of a shunt motor is connected to a DPDT switch that connects the armature to either the line or external resistor R
 - in normal operation the armature is connected to the source
 - opening the switch, the armature current I_a drops to zero and the rotor will spin until friction and windage losses brake the rotation
 - the machine operates as a generator with no-load
 - closing the switch onto the resistor, the induced voltage causes a reverse current to flow in R, creating a counter torque
 - the value of R is selected for twice the rated motor current, braking at twice the drive torque
Dynamic Braking

- The braking torque is proportional to the braking resistor’s current, I_a
 - as the motor slows down, E_0 decreases as well as I_a
 - consequently the braking torque becomes smaller
 - the torque goes to zero as the rotor halts
 - the speed drops quickly at first and then more slowly
 - dynamic braking is an exponential decay
Plugging

- The motor can be stopped more rapidly by plugging
- Plugging is the sudden reversing of the armature current
 - accomplished by reversing the terminals to the armature circuit
 - under normal motoring conditions
 \[I_a = \frac{(E_s - E_0)}{R_a} \]
 - sudden reversing the terminals causes the net voltage acting on the armature circuit to become \((E_s + E_0)\), resulting in a large reverse current (50x)
 - a limiting resistor in series is used to control the current to twice full-load current
Plugging

- The braking torque is proportional to the armature current, I_a
 - initially, the torque is twice the full-load torque and is limited by the current-limiting resistor
 - a reverse torque is developed even when the armature comes to a stop
 - the reverse torque at zero speed is half of the initial braking torque
 - as soon as the motor stops in two time-constants, the armature circuit must be opened
Mechanical Time Constants

- Dynamic braking causes the speed to drop exponentially

\[T = \frac{J n_1^2}{(30/\pi)^2 P_1} \]

- \(T = \) mechanical time constant
- \(J = \) Moment of inertia
- \(n_1 = \) initial speed
- \(P_1 = \) initial power to the braking resistor

- \(T_0 = \) time for the speed to decrease by 50% of its original value:

\[T_0 = 0.693T = \frac{J n_1^2}{131.5 P_1} \]

- the equation neglects the extra braking effects of windage and friction
Dynamic Braking

• Example
 – 225 kW, 250 V, 1280 rpm dc motor has windage, friction, and iron losses of 8 kW
 – drives a large flywheel with 177 kg m² moment of inertia
 – motor is connected to a 210 V dc supply and operating at a speed of 1280 rpm
 – a 0.2 ohm braking resistor is used
 – calculate: T_0, time for the motor speed to drop to 20 rpm, and time for the motor speed to drop to 20 rpm if there is no dynamic braking
Plugging

• Example
 – the motor is plugged using a current-limiting resistor of 0.4 ohm resistor
 – calculate: the initial braking current and power and the stopping time
Basics of Variable Speed Control

- The most important outputs of a motor are speed and torque
 - useful to determine the machine limits as speed increases
- the rated values of armature current, armature voltage, and field flux must not be exceeded

- Assume that the machine is an ideal separately excited with negligible armature resistance
 - consider the per unit values of E_a, I_a, Φ_f, I_f, and n
 - the per unit approach renders a universal torque-speed curve

- the per-unit torque is given by the per-unit flux times the per-unit armature current
- the per-unit armature voltage is given by the per-unit speed times the per-unit flux
Basics of Variable Speed Control

• The per-unit equations of torque and induced voltages are:

\[T = \Phi_f I_a \]

\[E_a = n \Phi_f \]

– to reduce speed below base, reduce armature voltage while keeping rated current and flux constant (constant torque mode)

– to increase speed above base, reduce flux, but as current cannot exceed base, torque decreases (constant power mode)

• DC machines can operate anywhere within the limits of the torque-speed curve
Homework

• 5-14, 5-15, and 5-17